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Real networks often grow through the sequential addition of new
nodes that connect to older ones in the graph. However, many
real systems evolve through the branching of fundamental units,
whether those be scientific fields, countries, or species. Here, we
provide empirical evidence for self-similar growth of network
structure in the evolution of real systems—the journal-citation
network and the world trade web—and present the geomet-
ric branching growth model, which predicts this evolution and
explains the symmetries observed. The model produces multi-
scale unfolding of a network in a sequence of scaled-up replicas
preserving network features, including clustering and commu-
nity structure, at all scales. Practical applications in real instances
include the tuning of network size for best response to external
influence and finite-size scaling to assess critical behavior under
random link failures.

complex network | self-similarity | network evolution | geometric
branching growth | geometric renormalization

In the context of network science, growth is most often modeled
through the sequential addition of new nodes that connect to

older ones in a graph by different attachment mechanisms (1,
2), including models of hidden variables, where nodes are char-
acterized by intrinsic properties (3, 4). Other growth processes
have also been considered, such as duplication to explain large-
scale proteome evolution (5, 6). Here, we take an alternative
approach and explore the relation between branching growth (7)
and geometric renormalization (GR) (8) to explain self-similar
network evolution. Renormalization in networks, based on the
ideas of the renormalization group in statistical physics (9–11),
acts as a sort of inverse branching process by coarse-graining
nodes and rescaling interactions. Thus, branching growth can be
seen as an inverse renormalization transformation: an idea that
was introduced in ref. 12 using a purely topological approach to
reproduce the structure of fractal networks, where fractality was
interpreted as an evolutionary drive toward robustness. How-
ever, topological distances in networks are seriously constrained
by the small-world property, while the characterization of frac-
tality in real networks disregards fundamental features of their
structure, including clustering and community organization.

GR (8) is an alternative technique that can be performed by
virtue of the discovery that the structure of real networks is
underlain by a latent hyperbolic geometry (13, 14). Thus, the
likelihood of interactions between nodes depends on their dis-
tances in the underlying space, via a universal connectivity law
that operates at all scales and simultaneously encodes short-
and long-range connections. This approach has been able to
explain many features of the structure of real networks, includ-
ing the small-world property, scale-free degree distributions, and
clustering, as well as fundamental mechanisms such as prefer-
ential attachment in growing networks (4) and the emergence
of communities (15, 16). Given a network map, GR produces
a multiscale unfolding of the network in scaled-down replicas

over progressively longer length scales. This transformation has
revealed self-similarity to be a ubiquitous symmetry in real net-
works, whose structural properties remain scale-invariant as the
observational resolution is decreased (8). This poses the question
of whether this self-similarity could be related to the mechanisms
driving the growth of real networks and, therefore, whether their
evolution could be conceptualized within the framework of the
GR group.

In this work, we show that real networks—citations between
scientific journals (17, 18) and international trade (19)—have
evolved in a self-similar way over time spans of more than 100
y, meaning that their local, mesoscale, and global topological
properties remain in a steady state as time goes by, with a mod-
erate increase of the average degree. We demonstrate that the
observations can be modeled by a geometric branching growth
(GBG) process that produces a self-similar metric expansion.
Beyond the capacity of the model to explain and predict the
self-similar evolution of real networks effectively, the technique
is flexible and allows us to generate scaled-up network repli-
cas that, when combined with scaled-down network replicas (8),
provide a full up-and-down self-similar multiscale unfolding of
complex networks that covers both large and small scales. We
illustrate the use of GBG multiscale unfolding in real network
instances via the tuning of network size for optimal response to
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an external influence, referred to here as “the optimal mass,” and
a finite-size scaling analysis of critical behavior under random
link failures.

Self-Similar Evolution of Real Networks
We consider the evolution of the journal-citation network (JCN)
(17) and of the world trade web (WTW) (19) over time spans of
more than 100 years.

The evolution of JCNs offers a quantitative proxy for the
development of contemporary science and the emergence of a
vast number of new scientific fields and subfields, driven by diver-
sification and specialization (17, 18, 20–22). Here, we analyze
data from ref. 17, where the time period 1900–2013 is divided
into time windows of 10 y before 1970 and of 5 y thereafter. One
citation network is reconstructed for each time window, where
journals are represented as nodes that are linked whenever
citations between their publications exist.

An increase of the number of actors is also a hallmark of
the evolution of the international trade system. The number of
sovereign states in the world increased from 42 in 1900 to 195
in 2016 (23), mainly due to processes such as decolonization;
the dismantlement of large or multicultural states such as the
USSR and Yugoslavia (1991) into a number of smaller states;
the parliamentary split of an existing state into two, as hap-
pened in Czechoslovakia (1993); and independence processes
after civil wars, like that of the Republic of South Sudan and
the Republic of the Sudan (2011). Here, we use networks in
the World Trade Atlas (19), a collection of annual world trade
network maps in hyperbolic geometry, which provide informa-
tion on the long-term evolution of the international trade system
from 1870 to 2013, where nodes represent countries linked by
bilateral trade relationships. The maps revealed that globaliza-
tion, hierarchization, and localization are main forces shaping
the trade space, which naturally exhibits hyperbolic geometry,
rather than Euclidean, as a reflection of its complex architecture.

More details of the two datasets are available in SI Appendix,
section I, and the main statistical properties are in SI Appendix,
Tables S1 and S2.

The size N of the two evolving networks increases over time,
ranging from 118 journals in 1900–1910 to 21,460 in 2008–2013
and from 24 countries in 1870 to 189 in 2013 (SI Appendix, Fig. S1
A and B). After World War II, the average degree 〈k〉 only shows
a moderate increase in the JCN and almost flat behavior in the
WTW (SI Appendix, Fig. S1 C and D). Degree distributions, clus-
tering spectra, degree–degree correlations, and the community
structure of some snapshots are shown for the JCN in Fig. 1 and
for the WTW in SI Appendix, Fig. S2 (results for all snapshots are
in SI Appendix, Figs. S3–S5). We observe clear-cut self-similar
behavior with the curves for different networks overlapping when
the degrees of the nodes are rescaled by the average degree of
the corresponding network. Fig. 1D and SI Appendix, Fig. S2D
show the modularity, Q , of the optimal partitions of the nodes
into different communities detected by the Louvain method (24)
and the adjusted mutual information, AMI (25), between the
optimal partitions of two consecutive snapshots, in which we only
considered the nodes that exist in both. The level of modular-
ity remains stable throughout the evolution of the systems and
the overlap between communities in the consecutive snapshots is
consistently very high. This indicates that the community struc-
ture is mostly preserved as time goes by. Hence, the empirical
evidence presented so far indicates that these real networks grow
in a self-similar fashion.

GBG
The key property that characterizes the evolution of the systems
under study is inheritance. Indeed, when a scientific field gives
rise to the birth of new subfields, the offspring will inherit the-
matic topics similar to those of the parent field. Likewise, when
a country breaks up, the new sovereign countries will inherit
the wealth and trade partners of the original state. In network

A B

C D

Fig. 1. Self-similar evolution of real networks. (A) Complementary cumulative distribution Pc(kres) of rescaled degrees kres = k/〈k〉 for different time snap-
shots in the JCN. (B) Degree-dependent clustering coefficient c̄(kres) over rescaled-degree classes. (C) Degree–degree correlations, as measured by the
normalized average nearest-neighbor degree k̄nn,n(kres) = k̄nn(kres)〈k〉/〈k2〉. (D) Modularity, Q, and adjusted mutual information, AMI, between the commu-
nity partitions of two consecutive snapshots by considering nodes existing in snapshots in the JCN. A few representative snapshots are shown here. Results
for all networks in the period analyzed are in SI Appendix, Figs. S3–S5.
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terms, this means that when a node belonging to a given com-
munity splits, offspring nodes most likely will belong to the
same community establishing relations preferentially with simi-
lar partners. In addition, the degree of a node can be considered
as a proxy of its wealth. Thus, when a node splits, we expect
that its ability to generate connections will be partially inherited
by the newborn offspring. Following these principles, we intro-
duce a model for network evolution that is able to incorporate
inheritance while preserving the self-similarity observed in real
systems.

The model is based on a geometric description of networks
that provides a simple and accurate explanation for the observed
regularities in real systems (26). Such representation assigns two
coordinates to every node in a real network, one related to its
similarity to other nodes and another to its degree (13), so it
seems particularly suited for our problem. The combination of
the two components leads to hyperbolic space as the natural
geometry underlying the hierarchical architecture of networks
(27). The GBG mechanism that we propose here splits existing

nodes into offspring that are placed in a close neighborhood of
their parent’s node location in the underlying space. In this way,
newborn nodes automatically inherit structural properties of
their parent node effectively encoded in the similarity and popu-
larity coordinates that determine their connections in the evolved
network. By iterative application, the GBG transformation pro-
duces, thus, a self-similar multiscale unfolding of the network in
a shell of scaled-up replicas of progressively increasing size. This
mechanism is illustrated in Fig. 2A, where the similarity subspace
is represented as a circle, and the size of the node is related to its
degree. In the next subsection, we briefly explain the basics of the
geometric description of networks before introducing the GBG
model.

Geometric Description of Complex Networks. The GBG model
introduced in this work is built upon a geometric description of
complex networks, which is very well described by the S1 model
(13). The S1 model is a hidden-variables model, meaning that
nodes are assigned attributes that modulate the likelihood of

Fig. 2. Sketch of the GBG model. (A) In each layer of the self-similar upwards multiscale unfolding, the size of each node is proportional to the
logarithm of its hidden degree, κ. Different colors represent different geometric communities. Dashed lines connect ancestors to their descendants
along the flow (blue arrows). A pair of nodes, i and j, with hidden degrees κi and κj has been highlighted, for which the angular separation, ∆θij ,
represents their similarity distance. In A, Inset, we show a sketch of the branching process from an ancestor to its pair of descendants. The com-
plementary cumulative distribution of z values together with their corresponding stable distribution fittings are in B for JCN 1965–1975 and in C
for WTW 1965.
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connections. More specifically, each node i is assigned a hid-
den degree κi that measures its popularity—wealth, influence,
. . .–, and an angular position θi in a one-dimensional sphere
(or circle) representing the similarity space. The hidden degree
of node i sets its scale of connectivity and gives the ensemble
average degree of the node—that is, if node i has hidden degree
κi , then its expected degree is k̄(κi) =κi , where the bar denotes
the ensemble average over many network realizations. Every pair
of nodes, i and j , is connected with probability

pij =
1

1 +χβij
=

1

1 +
(

R∆θij
µκiκj

)
β

, [1]

that takes a gravity law form so that more popular (larger κ) or
more similar (lower ∆θ) nodes are more likely to form connec-
tions (13). The similarity circle has radius R adjusted to maintain
a constant density of nodes equal to one, without loss of gen-
erality. The model has two main parameters: β > 1, controlling
the average clustering coefficient 〈c〉, and µ, adjusting the net-
work average degree 〈k〉. Degree heterogeneity is controlled by
the distribution of hidden degrees, and community structure is
encoded into the angular distribution of nodes in the similarity
space.

Interestingly, the S1 model is equivalent, through an isomor-
phism, to another geometric model, the H2 model (27). The
isomorphism maps the hidden degree κi to a radial coordinate,
ri =RH2 − 2 ln κi

κ0
, while keeping the same angular position.

Upon this transformation, each node is positioned in a point
of the hyperbolic plane (ri , θi), while the connection probabil-
ity (Eq. 1) becomes a function of the hyperbolic distance among
nodes only (27). Hyperbolic distances are then measured with the
metric tensor ds2 = dr2 + sinh2 rdθ2. Both the S1 and H2 mod-
els are different faces of the same coin, as they generate the same
ensemble of networks. In a certain sense, this equivalence is sim-
ilar to the equivalence between Newton’s view of gravity as an
interaction due to the mass of bodies and Einstein’s perspective,
where gravity is just a geometric effect due to the deformation
of spacetime. Each formulation can be used depending on the
particular application. For instance, the H2 is more suitable for
navigability (28), whereas the S1 is more convenient for commu-
nity detection (19). Notice that in contrast to H2, each hidden
variable in S1 has an explicit contribution to the probability of
connection. Such explicit contributions turn out to be crucial for
our GBG model.

The clue for the connection between topology and geometry
in the S1/H2 model is clustering, which arises as a reflection
of the triangle inequality in the underlying space. Notice that
clustering in a network is a form of many-body interactions
among nodes, so that any model aiming at reproducing clus-
tering must include these effects either directly or effectively.
When interactions are pairwise, geometry induces in a natural
way effective many-body interactions and so clustering. Among
all geometric random graphs models, the S1 model is able to
reproduce sparse, small-world, highly clustered networks with
heterogeneous degree distributions using a single connectivity
law that encodes short- and long-range connections simultane-
ously. The model is able to do so while being a maximum-entropy
model, meaning that the model makes the minimum number
of assumptions to explain observations (29), so it is the most
parsimonious option. Likewise, the S1/H2 model is particularly
interesting because a body of analytic results for the most rele-
vant topological properties have already been derived, including
degree distribution (13, 27, 30), clustering (27, 30, 31), diame-
ter (32–34), percolation (35, 36), self-similarity (13), or spectral
properties (37). The model has been extended to weighted net-
works (38) and multiplexes (39–41) and has been used to model

real networks from many different domains, from metabolic net-
works (42) or the brain (43, 44) to the WTW (19) and the
Internet (28).

Hidden degrees and angular positions of nodes in real net-
works (together with the parameters β and µ) can be estimated
by using the tool Mercator (45) that takes as input the network
topology and maximizes the probability that such structure is
generated as an instance of the S1 model; more details can be
found in SI Appendix, section II. The estimated values define a
geometric map of the network and, due to the aforementioned
isomorphism between S1 and H2, the underlying geometry is the
hyperbolic plane (28). Notice that the inferred hidden degree
of a node corresponds, as a first approximation, to the observed
degree of the node in the real network (28), while the distribution
of inferred similarity coordinates is typically inhomogeneous, so
that nodes concentrate in specific regions of the circle, forming
geometric communities (19, 28, 42).

The GBG Model. The GBG dynamics is inspired by the GR group
introduced in ref. 8. In brief, the GR transformation (8) is
applied to network maps and proceeds by defining nonoverlap-
ping blocks of consecutive nodes of equal size r around the
similarity circle, which are then coarse-grained into a single node
in the renormalized lower-resolution map, where pairs of nodes
are connected with a link if any of their precursor nodes were
connected in the original layer. As a result, a multiscale unfolding
of self-similar scaled-down network replicas is obtained, except
for the average degree of the renormalized layers, which typi-
cally grows exponentially in real networks (more details are in
SI Appendix).

Unlike GR, GBG works in the opposite direction by splitting
nodes instead of merging them. The GBG transformation can be
controlled to adjust the growth in the number of nodes and also
the flow of the average degree, embodying a family of models
that includes noninflationary and inflationary growth. Noninfla-
tionary growth produces a sequence of progressively magnified
layers with decreasing average degree that comply with GR,
meaning that when GR is applied to the layer obtained after the
GBG transformation, the result is the original network. Infla-
tionary growth means that scaled-up shell layers are produced
with an average degree that does not decrease very fast, or even
increases. This case is relevant to model the growth of connection
over time in the JCN and the WTW.

The first step to generate a GBG scaled-up layer of a real
network is to split every node in the original map into r descen-
dants with probability p, so that the population increases as
N ′=N (1 + p(r − 1)) = bN with branching rate b. For mathe-
matical convenience, we will continue the description with r =
2 (b = 1 + p). We can use parameter b in combination with
the number of layers in the multiscale unfolding to adjust the
growth of the number of nodes over the evolution of the net-
work. Every branching node produces a pair of descendants
that require the assignment of similarity coordinates in the S1

circle and of hidden degrees, whereas nodes that do not split
remain with the same coordinates. The radius of the circle
is rescaled as R′= bR, so that the density of nodes remains
equal to one.
Assigning coordinates to descendants. One of the requirements
for self-similar growth is the preservation of the ordering of
nodes in the circle and their concentration across specific angu-
lar sectors defining geometric communities (15, 16). To this end,
the simplest means to model growth is to place the descendants
at angular coordinates θ+

i and θ−i to the left and right of the
angular position of their corresponding ancestor, i , with uni-
form probability within a small angular separation ∆θ±. The
values ∆θ± are bounded by the total number of nodes in the
descendant layer and by the proximity (to the left or right)
of consecutive nodes to the ancestor in the similarity circle.

4 of 10 | PNAS
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Fig. 3. GBG is compliant with GR in the noninflationary limit. (A–D) GR-GBG transformation in the Internet. We first renormalized the original network,
applying GR four times to obtain a sequence of four layers of decreasing size. Then, we took the last layer as the original network, going back from layer
4 to layer 0 by applying GBG four consecutive times to obtain a new sequence of four layers of increasing size. Sketch A represents this process, from the
original Internet to its renormalized version using GR (indicated by the red arrow) and then back to the reconstructed Internet using GBG (as indicated
by the green arrow). Colors of nodes in A indicate community structure, as detected by the Louvain algorithm. Notice that both sequences of networks
have the same sizes at each layer, so that they can be directly compared. B–D show different topological properties for the GR (symbols) and GBG (solid
lines) layers. (B) Flow of the complementary cumulative degree distribution and, in Inset, the average degree that, as expected, increases during the GR
phase and decreases during the GBG phase. (C) Flow of the degree-dependent clustering coefficient and, in Inset, the average clustering, which remains
constant as expected. (D) Flow of the connection probability p(χij) as a function of the effective distance χij in layer l. (E–H) GBG-GR transformation in the
human metabolic network. In this case, the experiment was performed in the opposite order. The original network was first transformed by applying GBG
to produce four layers, and then GR was applied to layer 4 to go back to layer 0. In both experiments, the branching ratio was set to b = 1.2.

We set ∆θ±= min{ 2π
N ′ ,

∆θij
2
}, where ∆θij =π− |π− |θi − θj‖

is the angular distance between the branching node i and its
consecutive neighboring node j (to the left or right) in the ances-
tor layer. This choice of ∆θ± ensures the preservation of large
gaps between consecutive nodes by limiting the angular distance
between branching node and descendant, while it prevents cross-
ings between descendants of neighboring branching nodes, even
in densely populated angular regions. In this way, the commu-
nity organization encoded in the angular distribution of nodes is
inherited from the old layer to the new one.

To assign the hidden degrees κ+ and κ−, we impose two con-
ditions. First, the hidden degrees of ancestors and descendants
need to comply with GR. In ref. 8, it was shown that the quan-
tity z =κβ is conserved by GR when two nodes are merged
into a supernode. Therefore, we now demand that whenever
a node with wealth z splits into two, its wealth z is conserved
and inherited by the two offspring, so that z = z+ + z−. Sec-
ond, the hidden degrees of descendants must be independent
and identically distributed (iid) random variables with a distribu-
tion of hidden degrees that preserves that of the ancestor layer,
ρ(κ) [equivalently, ρ(z )]. Taking the two conditions together, the
transformed hidden degrees z± of descendants should satisfy:∫∫

dz+dz−ρ(z+)ρ(z−)δ
(
z −

(
z+ + z−

))
= ρ(z ). [2]

The equation above implies that ρ(z ) is a stable distribution (46–
48), meaning that the linear combination of two independent
variables with probability distribution ρ(z ) has the same distribu-
tion, up to scaling and location factors. Stable distributions admit
multiple parametrizations, but are always defined by four param-
eters f (z ;α, η, c, d): the tail exponent α∈ (0, 2] and skewness
η ∈ [−1, 1], which control the shape; and c and d for scale and
location (SI Appendix, section III). Stable distributions conform a
rich family of models, including Gaussian (α= 2), Cauchy (α= 1
and η= 0), Lévy (α= 1/2 and η= 1), and Landau (α= 1 and
η= 1) distributions. Stable distributions are infinitely divisible
and are the only possible limit distributions for properly nor-
malized and centered sums of iid random variables (generalized
Central Limit Theorem) (49). In addition, they can accommo-
date fat tails and asymmetry and, therefore, often offer a very

good fit for empirical data (48, 50–52). Fig. 2 B and C show very
good fits for the JCN and WTW in the original layers (53, 54)
(see SI Appendix, Fig. S6 for more empirical networks and the
corresponding fitting parameters in SI Appendix, Table S3). Once
the parameters of the stable distribution are estimated∗ , we pro-
ceed to generate values of z± for descendant nodes, as described
in Materials and Methods.
Connecting nodes in the descendant layer. Once coordinates
have been assigned to offspring nodes, connections between
descendants in the new layer are implemented such that the
resulting network belongs to the S1 ensemble. In what we call
the “noninflationary” limit, we also require that the new network
is compliant with GR—that is, GR applied to the descendant
layer should result in the ancestor layer. This implies that, in
this limit, there are only connections in the descendant layer
between descendants of the same ancestor or of connected
ancestors. We then use the probability of connection pij Eq.
1 as in the S1 model, rescaling µ′= bµ in the new layer to
control the flow of the average degree and with β remaining
invariant as in the GR transformation. With this probability
pij (µ

′), we connect descendants branching from the same ances-
tor, and, for every pair of connected ancestors, we establish
potential links among their descendants with the same proba-
bility pij (µ

′), but making sure that at least one link is formed
between them (SI Appendix, section V). Finally, in the “infla-
tionary” limit, once the previous step is accomplished, we rescale
µ′→ aµ′ with a > 1 and add extra links in an unbiased way to
match the target average degree, as described in Materials and
Methods.

GBG Is a Statistical Inverse of GR. We support this claim with the
results shown in Fig. 3 and SI Appendix, Figs. S7–S14 for different
real networks and branching rates b, which show that the results
are robust. In Fig. 3 A–D, we show that after applying GR to the
Internet, the original network can be recovered with high fidelity
(in a statistical sense) by applying the noninflationary GBG to
the renormalized layer. Conversely, if we first apply the noninfla-
tionary GBG technique to obtain the scaled-up network and then

*Notice that since {zi} are bounded from the left, η= 1 and α< 1.
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recover the networks by GR, the result is analogous; see Fig. 3
E–H for the Metabolic network (details of the datasets are in SI
Appendix, section I)† . This means that noninflationary GBG and
GR flows produce the same values of average clustering, aver-
age degree, and empirical connection probability, among other
properties. The GBG transformation also preserves the original
community structure, as detected by the Louvain algorithm (24).
Furthermore, since the transformation also preserves the corre-
lation between hidden angles and degrees, the self-similarity of
the scaled-up networks extends to structural correlations among
nodes, such as degree–degree correlations (45).

As shown, GBG is a statistical inverse of GR, but inflation-
ary GBG is not because of the new links added to increase the
average degree over the value given by inverse GR. During the
evolution of the real systems analyzed in this work, we observe
a global increase of the density of connections (SI Appendix,
Fig. S1). In the WTW, this is due to the global growth of the
world gross domestic product and in the JCN to the increasing
number of researchers, and thus publications, within the scien-
tific system. Parameter a in the inflationary limit of GBG can be
adjusted to model such global increase by controlling the growth
of the average degree. If we apply GR to the obtained replica,
we would recover an inflated version of the original network with
extra links that we would need to deflate to recover the original
network. To rebalance the average degree one needs an extra
mechanism, like the pruning used in ref. 8 to produce scaled-
down network replicas. The deflation procedure is analogous to
the inflation technique, and we give the details in SI Appendix,
sections VII and VIII. Given that the addition of links in the
inflationary step of the inflationary GBG process, as well as the
pruning of links to decrease the average degree of GR layers are
compliant with the S1 model, we say then that GBG is a statisti-
cal inverse of GR, while inflationary GBG (GBG + addition of
links) is a statistical inverse of deflationary GR (GR + pruning
of links) (SI Appendix, Fig. S18).

Behavior of the Average Degree. In the noninflationary GBG
model (a = 1), we can use the inverse of the GR relation between
the average degrees in a descendant layer and in the ancestor
layer (8), using µ′= bµ to obtain 〈k〉(l) = (b−ν)l〈k〉(0), where
the scaling factor ν depends on the connectivity structure of the
original network, and 〈k〉(l) (the mean degree of layer l) refers
to the original network when l = 0. Typically, as the scaling fac-
tor ν is positive in real networks (8), the average degree of the
descendant layers decreases exponentially with the number of
layers.

As explained previously, in the inflationary regime, µ′ is
rescaled by α> 1, resulting in µ′= abµ. In this case, the aver-
age degree, 〈k〉(l)a , thus depends on a . Its behavior as a function
of the network size across layers can be calculated following the
same derivations as in ref. 8, which gives

〈k〉(l)a =a l〈k〉(l)=(ab−ν)l〈k〉(0)=

[
N (l)

N (0)

]
−ν+ ln a

ln b 〈k〉(0), [3]

with N (l) and N (0) the network sizes on layers l
and 0, respectively.‡ In the last step, we have used

†Notice that the semigroup property of GR also holds for GBG, meaning that two con-
secutive GBG transformations of scale b over a network are equivalent to a single
transformation of scale b2. This is easy to derive when the branching rate has an integer
value, but it holds even if b< 2. Results supporting this claim are shown in SI Appendix,
Fig. S15 for a synthetic network produced with the S1 model and different values of b
and in SI Appendix, Figs. S16 and S17 for different real networks.

‡Notice that the inflationary process is applied here to every layer in the flow. If,
instead, it is applied in a single step to the last layer produced in a noninflationary
GBG transformation, then 〈k〉(l)a = a〈k〉(l) = a(b−ν )l〈k〉(0) .

l = ln
(
N (l)/N (0)

)
/ ln b, implied by the relation N (l) = b lN (0).

From Eq. 3, the average degree 〈k〉(l)a increases as a power of
N (l). SI Appendix, Fig. S19 shows the high degree of congruency
between this theoretical prediction, the empirical data, and
simulations (as explained below) of the inflationary version of
GBG, in JCN and WTW.
Predicting the evolution of real networks. The inflationary GBG
model reproduces the self-similar evolution of JCN and WTW.
To support this claim, we divide the empirical data into two con-
secutive time windows: the first for estimation purposes and the
second for validation purposes. Note that JCN and WTW data
from before World War II are not used due to the high fluctu-
ations of the network properties (SI Appendix, Figs. S3 and S4).
We fix a value of b in the range 1< b< 2 to adjust the rate of
growth in our GBG simulation in such a way that we can produce
enough snapshots to compare with the real data. With this value
of b, we estimate parameter a from the empirical evolution of the
average degree vs. network size (see details in SI Appendix, sec-
tion VI). We find that a remains stable over time (SI Appendix,
Fig. S20), consistent with the empirical observation that the aver-
age degree grows as a power of the system size (Fig. 4A and SI
Appendix, Fig. S21A). Next, we use the network snapshot at the
end of the estimation period as the initial layer in GBG multi-
scale unfolding to simulate a number of scaled-up layers that we
then compare to empirical snapshots of approximately the same
size in the validation set. The comparisons of degree distribu-
tions, clustering, degree–degree correlations, and modularity are
shown in Fig. 4 D–G. Similar results are found for the WTW
(SI Appendix, Fig. S21).

We also measured the local rich-club and nested self-similarity
effects, reported in Fig. 4B and SI Appendix, Figs. S22 and S23.
We name as “local rich-club effect” and “nested self-similarity
effect” the observation in real networks that the nested hier-
archy of subgraphs produced by progressively thresholding the
degrees of the nodes presents, respectively, an increasing inter-
nal average degree and self-similar structure (13, 35). This is a
highly nontrivial property with crucial implications, such as the
absence of a critical threshold in any phase transition whose
critical point depends monotonously on the average degree,
including percolation, epidemic spreading processes, and the
Ising model (55). The results show that all of the networks
analyzed in this paper, including JCN and WTW, present the
two effects (SI Appendix, Figs. S22 and S23). Notice that stan-
dard growing network models, including the Barabási–Albert
model (1) and the Popularity–Similarity Optimization model in
hyperbolic space (4), have a constant average degree as the net-
work grows, and they also present a constant average degree
of the subgraphs in the nested hierarchy (SI Appendix, Fig.
S24). Therefore, they lack the local rich-club effect. In fact,
if those models were adjusted to increase the average degree
over time, as happens in the real networks that we analyze in
this work, the flow of the average degree in the nested hier-
archy would be decreasing, in stark contrast to the empirical
observations (SI Appendix, Fig. S24B). In addition, the results
are robust for different values of b and for different starting
times (SI Appendix, Fig. S25–S27). Therefore, the GBG model
reproduces the self-similar evolution of the structure of the
two networks with high fidelity. More comparisons between the
model and empirical observations are also shown in SI Appendix,
Figs. S28–S31.

Scaled-Up Real Network Replicas
The GBG model is not only able to explain the self-similar
growth of real networks, but it can also be used as a technique to
produce magnified replicas of real networks in research scenar-
ios very different from the study of network evolution. Scaled-up
replicas of real networks are versions where the number of nodes
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Fig. 4. The GBG model predicts the self-similar evolution of real networks. (A) Evolution of the average degree 〈k〉 vs. network size N. The estimation,
validation, and projection sections are separated by vertical dashed lines. Blue circles, green squares, and red stars represent empirical data, validation
points, and projection from the model, respectively. The data in the estimation section are used to find values of a (see details in SI Appendix, section
VI). The branching rate, b, is fixed to 1.5, and the corresponding value of a is 1.415 (SI Appendix, Fig. S20). For validation purposes, we grow the network
from 1965 to 1975 using GBG and compare the resulting networks with empirical (Emp.) snapshots of the same size. The equivalence between given
snapshots of the real JCN and the networks generated by GBG is stated in C. In D–G, we show a comparison of the topological properties of simulated and
empirical networks. (B) Local rich-club effect. (D) Complementary cumulative distribution of rescaled degrees. (E) Degree-dependent clustering coefficient
over rescaled-degree classes. (F) Degree–degree correlations. (G) The modularity Q.

is increased while preserving the statistical properties of the
original network, in particular, its average degree 〈k (0)〉. Using
GBG, the procedure is straightforward and involves adjusting
the parameter b, the number of layers l , and the inflationary
parameter a . The idea is to single out a specific scale after a
certain number of noninflationary GBG steps and to tune a to
increase the average degree to the target value by adding new
links using Eq. 5 (see details in SI Appendix, section VII). Notice
that this application of the GBG model can also be extended to
networks that do not necessarily evolve according to the model,
as it exploits the underlying geometric structure and congruency
with geometric models observed in many real-world networks.

More specifically, GBG, possibly in combination with GR,
allows us to investigate size effects in real networks, a prospect
that becomes extremely useful in different applications. We illus-
trate this through two examples. In the first, we explore a dynam-
ical model of opinion formation running on a real network—a
Facebook network—with the goal of detecting the network size
that produces an optimal response of the system to an external
influence. In the second, we combine scale-up network replicas
produced by GBG with scaled-down network replicas produced
by GR (as described in ref. 8) to explore the critical behavior
of a real network, the Internet, close to the transition where the
global connectivity of the network disintegrates under random
link failures.

Size-induced stochastic resonance in real networks.
We study the behavior of a model of opinion formation that
depends nontrivially on the size of the network on which it runs.
Here, we use a small Facebook network of 320 users working
for the same software company (56) (see data description in SI
Appendix, section I). The opinion-formation model was intro-
duced in ref. 57. The opinion of a node can change due to
imitation following a majority rule, an external influence in the
form of a periodic “fashion” wave, or noise. This model was
shown to present a stochastic resonance effect in small-world
networks (58), displaying an optimal response of the population
to the fashion wave for some noise level. The system also dis-
plays a size-induced stochastic resonance effect (59, 60), which
means there is an optimal value for the number of nodes, the
optimal mass, for which the average opinion best follows the
fashion, as a consequence of the coupling between noise and
system size.

However, those results were for graphs produced by network
models that allow one to control the size of the generated net-
works, and not for real networks. The GBG technique provides
the opportunity to study size-induced stochastic resonance in
real networks. We produced a GBG self-similar multiscale shell
of the Facebook network preserving the average degree of the
original network (see SI Appendix, Fig. S32 for the statistical
properties of the replicas as compared with the original net-
work) and simulated the dynamical process described next in
each layer. Each node has one of two possible opinions. At
each time step of the process, a node is randomly selected and
goes through a sequence of operations. The node first adopts
the majority opinion among its connected neighbors, then it is
forced to follow the fashion with a probability that depends on
the strength and periodicity of the fashion, and, finally, it adopts
randomly a new opinion with a probability that depends on the
intensity of the random noise (see SI Appendix, section IX for
details of our implementation). We modeled the external influ-
ence as a cosine function with amplitude A and period T and
measured the response of the system as a function of the noise
intensity ε for different system sizes. To measure the response
of the system, we used the spectral amplification factor (61)
R = 4A−2|〈e i2πt/Tρ(t)〉|, where ρ(t) = 1

N

∑
i mi(t) is the aver-

age opinion in the evolution, mi(t) is the opinion of node i at
time t , and 〈· · · 〉 denotes a time average.

The results are shown in Fig. 5A. The optimal response, Rmax,
is plotted in Inset as a function of N . For each size, N , there is a
maximum response for some intermediate value of the noise and
the optimal value occurs at some combination of noise and size.
Interestingly, for sufficiently small values of noise (Fig. 5C), R is
enhanced by increasing the noise, and for every noise intensity,
ε, the optimal response occurs at approximately the same value
as in Rmax, N = 2,379. Hence, we conclude that there is an opti-
mal mass for which the average opinion best follows the external
influence. Moreover, we also found that there is some value of N
for which R has a minimum—that is, the average opinion follows
the external influence to the least extent.

Critical behavior of real networks under random link failures.
The random failure of links in networks leads to a percola-
tion transition: a continuous structural change that disaggregates
the large cluster of connected network nodes into a bundle of
small isolated components (35, 55), hence disabling the system.
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Fig. 5. Controlling network size from network snapshots. (A and C) Opti-
mal mass of a Facebook network for best response to external modulation in
a noisy environment. (A) System response, R, as a function of the noise inten-
sity, ε, for different network sizes. A, Inset shows the maximum response as a
function of N. (C) System response, R, as a function of N for different values
of the noise intensity, ε. The range of noise values on the x axis corresponds
to the gray region in A. (B and D) Scaling with system size of random link
failure as a bond percolation process in the Internet. (B) Susceptibility, χ,
as a function of bond occupation probability, p, for different network sizes,
N. (D) Critical bond occupation probability, pc, and the maximum, χmax, of
the susceptibility, χ, as functions of network size, N. The dashed lines are
power-law fits, and the black symbols in D indicate the original network.
The GBG and GR shells are produced with b = 2.

The fraction of links removed, p, acts as a control parameter
that can be manipulated to change the state of the system in
in silico experiments, and the transition occurs at some specific
value: pc . Close to this critical point, the macroscopic properties
of the network, such as the relative size of the largest connected
cluster and the average cluster size, behave as power laws of
the distance to the critical point, (p− pc)δ , with some critical
exponents. One way of extracting these exponents is by observ-
ing how certain quantities vary as the size of the system changes.
However, the finite size scaling technique has faced serious chal-
lenges in real networks due to the lack of data beyond single
snapshots.

Next, we show that a downward–upward multiscale shell of
replicas produced by the joint action of the GBG and GR tech-
niques on a real Internet network (see SI Appendix, Fig. S32
for the statistical properties of the replicas as compared with
the original network) can be used to study the finite size scaling
behavior of bond percolation using only the data from a single
snapshot (Fig. 5 B and D). We measured the average size of the
largest component, 〈G〉, and its fluctuations—i.e., susceptibility
χ= 〈G2〉−〈G〉2

〈G〉 —as a function of p in each layer of the multiscale
shell using the fast algorithm of Newman and Ziff (62). In finite
systems, a peak in the susceptibility, χ, diverging with the system
size indicates the presence of a continuous phase transition, and
its position provides a way to estimate the percolation threshold,
pc : Fig. 5B. In Fig. 5D, we show that the critical link failure prob-
ability, pc , approaches zero as a power law, pc(N )∼N−0.374,
and the maximum, χmax, of the susceptibility also diverges as

a power law: χmax(N )∼N 0.456. Not only do these results sug-
gest a vanishing percolation threshold in the real Internet graph,
as usually happens in scale-free networks, but they also pro-
vide a method to estimate the corresponding critical exponents
numerically, thus offering a way to study critical phenomena in
single-instance real networks.

Conclusions
Real networks are observed to evolve in a self-similar way that
preserves their topology throughout the growth process over
long time spans. The GBG model lays out a minimal num-
ber of simple principles that combine branching growth, one of
the paradigms of evolution, and network geometry to explain
the empirical findings via a technique that generates self-similar
metric expansion of a network replicating its original structure.
One of the essential assumptions in the model, the preservation
of the distribution of hidden degrees as the number of nodes
increases, leads to the introduction of stable distributions in the
context of network modeling. Stable distributions, a rich fam-
ily of probability distributions with intriguing theoretical and
practical properties, are widely used to model heavy-tailed data
from many types of physical and economic systems and rep-
resent an alternative to the power-law paradigm in the study
of complex networks. Meanwhile, the GBG model relies on a
universal connectivity law that operates at all scales, simultane-
ously encoding short- and long-range connections, which keeps
its form over time. Our results suggest that the same principles
organize network connectivity at different length scales in real
networks and that these principles are also sustained over time.
As a result, simplicity, as one of the rationales for self-similarity,
is one of the keys to understanding and predicting network
evolution.

While some limitations of our model are obvious—for
instance, the exclusion of the birth/death processes of links and
nodes—we believe that complementary hypotheses would not
affect the results and our GBG model in any fundamental way.
The model captures the main mechanisms that drive and pre-
dict the self-similar evolution of real networks. In parallel, and
beyond the explanatory power of the model to effectively decode
the self-similar evolution of real networks, GBG is also a tech-
nique to produce scaled-up replicas of networks: an effective
and versatile tool facilitating analysis of the behavior of net-
works at different size scales. The combination of GBG with
scaled-down network replicas produced by GR provides full up-
and-down self-similar multiscale unfolding of complex networks
that covers both large and small scales. Potential applications
that require optimization or control of system size in complex
systems are countless. Apart from those explained here, we can
mention the assessment of scalability issues in dynamic processes
in core functions of real networks, such as in Internet routing
protocols.

Finally, the presence of symmetry has been observed to affect
synchronization on networks (63) and the spectrum of eigen-
vectors of the Laplacian matrix (64), which controls diffusive
processes. Future work will be needed to clarify the influence of
the evolutionary self-similarity of real networks described in this
paper on dynamical processes taking place on them.

Materials and Methods
Generating z±. First, we infer the parameters of the stable distribution of
a given layer α, η, c, and d. Then, if b = 2, meaning that all nodes split, the
distribution for descendants,

f(z±;α±, η±, c±, d±) = f(z±;α, η, c/21/α, d/2), [4]

follows immediately from Eq. 2, and basic properties of the stable distribu-
tion, with the shape parameters remaining invariant, and scale and location
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being adjusted so that the stable distribution of the ancestor layer is
recovered when we sum the hidden variables z± of the descendants. These
functions and Bayes’ rule can be used to generate numerically the values
of z+ from the probability of hidden degrees of descendants, conditional
on the degree of the ancestor ρ(z+|z)nor, normalized to ensure that the
hidden degrees of descendants are nonnegative. Finally, once z+ has been
generated, z− is calculated deterministically by using z− = z− z+, and the
variables z± are transformed back into κ± using κ= z1/β (SI Appendix,
section IV). In the case of fractional b, we produce the hidden variables
z± of the descendants of branching nodes using f(z;α, η, c/b1/α, d/b) and
assume that the stable distribution in the new layer is f(z;α, η, c/b1/α, d/b).
This gives a good approximation to the mixture of stable distributions
that result from nodes with different branching behavior. SI Appendix,
Fig. S6 demonstrates that the distribution of hidden variables z of descen-
dants has the same shape as that of the ancestor layer in different real
networks.

Inflationary GBG. We first proceed as in the noninflationary case. Once
we have a noninflationary GBG map, we set µ′a = aµ′ = abµ, (a > 1)
to adjust the average degree to a larger value by adding extra
links between any pair of nodes that remained unconnected using
probability:

πij =
pij(µ

′
a)− pij(µ

′)

1− pij(µ′)
. [5]

These steps ensure that 1) all pairs of descendants in the GBG layer are con-
nected with probability pij(µ

′
a), with the original form Eq. 1 in the ancestor

layer, and hence the resulting network belongs to the S1 ensemble; 2) links
exist between descendants of connected ancestors; and 3) the noninflation-
ary limit is recovered for a = 1, that is, in this case, πij = 0, and no extra links
are formed so that GBG complies with GR, and there are only connections
in the descendant layer between descendants of the same ancestor or of
connected ancestors.

Data Availability. Backbones of the WTW were taken from ref. 19. Back-
bones of the WTW and the JCN and their hyperbolic maps have been
deposited in the Zenodo platform and can be freely accessed (https://
zenodo.org/record/4023964) (65).
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35. M. Á. Serrano, D. Krioukov, M. Boguñá, Percolation in self-similar networks. Phys.
Rev. Lett. 106, 048701 (2011).

36. N. Fountoulakis, T. Müller, Law of large numbers for the largest component in a
hyperbolic model of complex networks. Ann. Appl. Probab. 28, 607–650 (2018).

37. M. Kiwi, D. Mitsche, Spectral gap of random hyperbolic graphs and related
parameters. Ann. Appl. Probab. 28, 941–989 (2018).
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